References
<A NAME="RG02803ST-1">1</A>
The
Chemistry of Dienes and Polyenes
Rappoport Z.
John Wiley & Sons;
New
York:
1997.
<A NAME="RG02803ST-2A">2a</A>
Mitchell TN.
Amamria A.
J.
Orgmet. Chem.
1983,
253:
47
<A NAME="RG02803ST-2B">2b</A>
Mitchell TN.
Reimann W.
J. Orgmet.
Chem.
1985,
281:
163
<A NAME="RG02803ST-2C">2c</A>
Mitchell TN.
Reimann W.
Organometallics
1986,
5:
1991
<A NAME="RG02803ST-2D">2d</A>
Mitchell TN.
Reimann W.
J. Orgmet.
Chem.
1987,
322:
141 Mitchell
T. N., Schütze M., Giebelmann F.; Synlett; 1997, 183
<A NAME="RG02803ST-2E">2e</A>
Quayle P.
Wang J.
Xu J.
Urch CJ.
Tetrahedron Lett.
1998,
39:
479
<A NAME="RG02803ST-2F">2f</A>
Imanieh H.
MacLeod D.
Zao Y.
Davies GM.
Tetrahedron Lett.
1992,
33:
405
<A NAME="RG02803ST-2G">2g</A>
Lautens M.
Huboux AH.
Tetrahedron Lett.
1990,
31:
3105
<A NAME="RG02803ST-2H">2h</A>
Lautens M.
Delanghe PHM.
Goh JB.
Zhang CH.
J.
Org. Chem.
1992,
57:
3270
<A NAME="RG02803ST-2I">2i</A>
Lautens M.
Zhang CH.
Goh JB.
Crudden CM.
Johnson MJA.
J. Org. Chem.
1994,
59:
6208
<A NAME="RG02803ST-2J">2j</A>
Lautens M.
Delanghe PHM.
Goh JB.
Zhang CH.
J.
Org. Chem.
1995,
60:
4213
<A NAME="RG02803ST-2K">2k</A>
Lautens M.
Ben RN.
Delanghe PHM.
Tetrahedron
1996,
52:
7221
<A NAME="RG02803ST-2L">2l</A>
Rossi R.
Carpita A.
Messeri T.
Synth. Commun.
1992,
22:
603
<A NAME="RG02803ST-2M">2m</A>
Tweddell J.
Hoic DA.
Fu GC.
J.
Org. Chem.
1997,
62:
8286
For allylic and aliphatic 1,1-bimetallated
species see also:
<A NAME="RG02803ST-3A">3a</A>
Leusink AJ.
Noltes JG.
J.
Orgmet. Chem.
1969,
16:
91
<A NAME="RG02803ST-3B">3b</A>
Isono N.
Mori M.
Tetrahedron Lett.
1997,
36:
9345
<A NAME="RG02803ST-3C">3c</A>
Isono N.
Mori M.
J. Org. Chem.
1996,
61:
7867
<A NAME="RG02803ST-3D">3d</A>
Wahamatsu H.
Isono N.
Mori M.
J.
Org. Chem.
1997,
62:
8917
<A NAME="RG02803ST-3E">3e</A>
Madec D.
Férézou J.-P.
Tetrahedron
Lett.
1997,
38:
6657
<A NAME="RG02803ST-3F">3f</A>
Grimaud L.
Férézou J.-P.
Prunet J.
Lallemand J.-Y.
Tetrahedron
1997,
53:
9253
<A NAME="RG02803ST-3G">3g</A>
Dabdoub MJ.
Dabdoub VB.
Baroni ACM.
J. Am. Chem. Soc.
2001,
123:
9694
<A NAME="RG02803ST-3H">3h</A> For a review see:
Marek I.
Normant J.-F.
Chem.
Rev.
1996,
96:
3241
<A NAME="RG02803ST-4A">4a</A>
Corey EJ.
Fuchs PL.
Tetrahedron
Lett.
1972,
3769
<A NAME="RG02803ST-4B">4b</A>
Ramirez F.
Desai NB.
McKelvie N.
J.
Am. Chem. Soc.
1962,
84:
1745
<A NAME="RG02803ST-4C">4c</A>
Uenishi J.
Kawahama R.
Yonemitsu O.
Tsuji J.
J. Org. Chem.
1996,
61:
5716
<A NAME="RG02803ST-4D">4d</A>
Uenishi J.
Kawahama R.
Yonemitsu O.
Tsuji J.
J. Org. Chem.
1998,
63:
8965
<A NAME="RG02803ST-4E">4e</A>
Uenishi J.
Kawahama R.
Shiga Y.
Yonemitsu O.
Tsuji J.
Tetrahedron
Lett.
1996,
37:
6759
<A NAME="RG02803ST-4F">4f</A>
Shen W.
Wang L.
J. Org. Chem.
1999,
64:
8873
<A NAME="RG02803ST-4G">4g</A>
Grandjean D.
Pale P.
Tetrahedron Lett.
1993,
34:
1155
<A NAME="RG02803ST-4H">4h</A>
Harada T.
Katsuhira T.
Oku A.
J.
Org. Chem.
1992,
57:
5805
<A NAME="RG02803ST-4I">4i</A>
Braun M.
Rahematpura J.
Bühne C.
Paulitz TC.
Synlett
2000,
1070
<A NAME="RG02803ST-4J">4j</A> For α-heteroatom-substituted
1-alkenyllithium reagents see:
Braun M.
Angew. Chem.
Int. Ed.
1998,
37:
430
<A NAME="RG02803ST-5A">5a</A>
Kocienski P.
Barber C.
Pure
Appl. Chem.
1990,
62:
1933
<A NAME="RG02803ST-5B">5b</A>
Takle A.
Kocienski P.
Tetrahedron
1990,
46:
4503
<A NAME="RG02803ST-5C">5c</A>
Kocienski P.
Dixon NJ.
Synlett
1989,
52
<A NAME="RG02803ST-5D">5d</A>
Pimm A.
Kocienski P.
Street SDA.
Synlett
1992,
886
<A NAME="RG02803ST-5E">5e</A> For a recent review see:
Boche G.
Lohrenz JCW.
Chem. Rev.
2001,
101:
697
<A NAME="RG02803ST-6A">6a</A>
Fargeas V.
Le Ménez P.
Berque I.
Ardisson J.
Pancrazi A.
Tetrahedron
1996,
52:
6613
<A NAME="RG02803ST-6B">6b</A> Le Ménez P., Fargeas
V., Poisson J., Ardisson J., Lallemand J.-Y., Pancrazi A.; Terahedron Lett.; 1994, 35: 7767
<A NAME="RG02803ST-6C">6c</A>
Le Ménez P.
Firmo N.
Fargeas V.
Ardisson J.
Pancrazi A.
Synlett
1994,
995
<A NAME="RG02803ST-6D">6d</A>
Le Ménez P.
Berque I.
Fargeas V.
Ardisson J.
Pancrazi A.
Synlett
1994,
998
<A NAME="RG02803ST-6E">6e</A>
Le Ménez P.
Berque I.
Fargeas V.
Ardisson J.
Lallemand J.-Y.
Pancrazi A.
J. Org.
Chem.
1995,
60:
3592
<A NAME="RG02803ST-7">7</A>
Le Ménez, P.; Brion, J.-D.;
Lensen, N.; Chelain, E.; Pancrazi, A.; Ardisson, J. results to be published.
<A NAME="RG02803ST-8">8</A>
Chen S.-ML.
Schaub RE.
Grudzinskas CV.
J. Org. Chem.
1978,
43:
3450
<A NAME="RG02803ST-9">9</A>
Quayle P.
Wang J.
Xu J.
Urch CJ.
Tetrahedron Lett.
1998,
39:
481
<A NAME="RG02803ST-10">10</A>
Preparation of Z
-7: A solution of the 5-lithio-2,3-dihydro-furan
derivative 1 (2.5 mmol)
[9]
in THF (4 mL) was added, via cannula,
to the solution of the bis-(trimethylsilyl)
dilithio-cyanocuprate
[15]
at -30 °C
(2.75 mmol, 1.1 equiv) in THF-Et2O (6 mL/12
mL). The mixture was stirred at -5 °C to 0 °C for
1.5 h. The mixture was then cooled at -40 °C and Bu3SnCl
(4 equiv) was added. The temperature was allowed to rise to 0 °C
over 1 h, stirring was maintained for 4 h, while the temperature
rose to 20 °C. The reaction mixture was poured into a solution
of saturated aqueous NH4Cl/concentrated ammonia
(4:1) at 0 °C and stirred for 30 min before extraction
with diethyl ether. After purification by chromatography on silica
gel compound Z
-7 was
obtained in 86% yield. IR (Neat): 3298, 2954, 2923, 2871,
1571, 1463, 1244, 1180, 1046, 960, 871, 830, 743, 685, 620, 591
cm-1. 1H NMR (200
MHz, CDCl3) δ 0.0 (s, 9 H), 0.88 (m, 15 H), 1.32
(m, 6 H + OH), 1.45 (m, 6 H), 2.45 (q, J = 6.5
Hz, 2 H), 3.69 (t, J = 6.5 Hz,
2 H), 6.72 (t, J = 6.5 Hz, 1
H, J
H-
119
Sn = J
H-
117
Sn = 170.0
Hz). 13C NMR (50 MHz, CDCl3) δ -0.3
(3 CH3), 11.3 (3 CH2, J
C-
119
Sn = 318.0
Hz, J
C-
117
Sn = 304.0
Hz), 13.6 (3 CH3), 27.4 (3 CH2, J
C-
119
Sn = J
C-
117
Sn = 58.0
Hz), 29.2 (3 CH2, J
C-
119
Sn = J
C-
117
Sn = 19.0
Hz), 42.4 (CH2, J
C-
119
Sn = J
C-
117
Sn = 57.5
Hz), 62.1 (CH2), 147.6 (C), 150.7 (CH, J
C-
119
Sn = J C-
117
Sn = 20.0
Hz). MS (CI, CH4): for major 120Sn
isotope, m/z 377,
311, 308, 306, 304, 252, 250, 248, 102.
<A NAME="RG02803ST-11">11</A> To a solution of the vinyltin
derivative Z
-7 in
CH2Cl2 (or CH3CN) at 0 °C
(or below) was slowly added a CH2Cl2 solution
of iodine (1.05 equiv) until persistence of an orange-red color
(1 h at 0 °C). The solution was then washed with an aqueous
KF and a saturated aqueous Na2SO3 solution
before evaporation of the solvent and chromato-graphy on silica
gel. Compound Z
-8 was
obtained in 91% yield. 1H NMR (200
MHz, CDCl3) δ 0.18 (s, 9 H), 2.45 (q,
J = 6.5 Hz, 2 H),
2.5 (s, 1 H), 3.72 (t, J = 6.5
Hz, 2 H), 6.57 (t, J = 6.5 Hz,
1 H). 13C NMR (50 MHz, CDCl3) δ 1.5
(3 CH3), 42.1 (CH2), 60.6 (CH2),
116.0 (C), 143.5 (CH). MS (CI, CH4): m/z 181,
143, 103, 91, 73. Anal. calcd for C7H15IOSi:
C, 31.12; H, 5.60; I, 46.97; O, 5.92; Si, 10.40; Found: C, 31.32;
H, 5.48.
<A NAME="RG02803ST-12">12</A>
Lautens M.
Huboux AH.
Tetrahedron Lett.
1990,
31:
3105
<A NAME="RG02803ST-13">13</A>
Preparation of Z
-9, E
-10 and E
-11 derivatives:
A solution of
the 5-lithio-2,3-dihydrofuran derivative 1 (2.5 mmol)
in THF (4 mL) was added, via cannula, to the solution of the bis-[(tributyl)stannyl] dilithiocyanocuprate
[9]
at -30 °C (2.75
mmol, 1.1 equiv) in THF-Et2O (6 mL/12
mL). The mixture was stirred at -5°C to 0 °C
for 1.5 h 30. The mixture was then cooled at -40 °C
and a THF solution (1-2 mL) of the quenching agent, NIS,
NBS or NCS (4.0 equiv), was added. The temperature was allowed to
rise to 0 °C for 1 h, stirring was maintained for 4 h,
with temperature going up to 20 °C. The reaction mixture
was poured into a solution of saturated aqueous NH4Cl/concentrated
ammonia (4:1) at 0 °C and stirred for 30 min before extraction
with diethyl ether. The Z
-9 compound was obtained in 75% yield.
IR (Neat): 3324, 2950, 2920, 2870, 2850, 1594, 1461, 1376, 1180,
1044, 907, 733, 690, 664, 597 cm-1. 1H
NMR (200 MHz, CDCl3) δ 0.85 (t, J = 8.0 Hz, 6 H), 0.96 (t, J = 8.0 Hz, 9 H), 1.30 (m, 6
H), 1.48 (m, 1 H, OH), 2.45 (q, J = 6.5
Hz, 2 H), 3.69 (t, J = 6.5 Hz,
2 H), 6.14 (t, J = 6.5 Hz, 1
H, J
H-
119
Sn = J
H-
117
Sn = 42.0
Hz). 13C NMR (50 MHz, CDCl3) δ 11.1 (3
CH2, J
C-
119
Sn = 348.0
Hz, J
C-
117
Sn = 332.0
Hz), 13.6 (3 CH3), 27.2 (3 CH2, J
C-
119
Sn = J
C-
117
Sn = 60.0
Hz), 28.6 (3 CH2, J
C-
119
Sn = J C-
117
Sn = 20.0
Hz), 42.6 (CH2, J
C-
119
Sn = J
C-
117
Sn = 32.0
Hz), 60.9 (CH2), 110.0 (C), 145.2 (CH, J
C-
119
Sn = J
C-
117
Sn = 20.0
Hz). MS (CI, CH4): for major 120Sn
isotope, m/z 377, 322, 307,
252. Anal. calcd for C16H33IOSn: C, 39.46;
H, 6.83; I, 26.06; O, 3.29; Sn 24.37; Found: C, 39.88; H, 7.09.
<A NAME="RG02803ST-14">14</A>
Selected NMR spectroscopic data
Z
-12: 1H
NMR (200 MHz, CDCl3) δ 2.22 (q, J = 6.5 Hz, 2 H), 3.63 (t, J = 6.5 Hz, 2 H), 6.51 (t, J = 6.5 Hz, 1 H). 13C NMR
(50 MHz, CDCl3) δ 40.4 (CH2), 55.5
(C), 59.9 (CH2), 143.5 (CH).
E
-13: 1H
NMR (200 MHz, CDCl3) δ 2.37 (q, J = 7.0 Hz, 2 H), 3.72 (t, J = 7.0 Hz, 2 H), 6.90 (t, J = 7.0 Hz, 1 H). 13C NMR
(50 MHz, CDCl3) δ 37.8 (CH2), 51.0
(C), 60.3 (CH2), 143.7 (CH).
14
: 1H NMR (200
MHz, CDCl3) δ 1.8 (s, 1 H), 2.44 (q, J = 6.5 Hz, 2 H), 3.76 (t, J = 6.5 Hz, 2 H), 6.48 (t, J = 6.5 Hz, 1 H). 13C
NMR (50 MHz, CDCl3) δ 36.2 (CH2),
60.3 (CH2), 90.5 (C), 135.1 (CH).
E
-15: 1H
NMR (200 MHz, CDCl3) δ 2.43 (q, J = 7.0 Hz, 2 H), 3.69 (t, J = 7.0 Hz, 2 H), 6.51 (t, J = 7.0 Hz, 1 H). 13C NMR
(50 MHz, CDCl3) δ 34.9 (CH2), 60.5
(CH2), 68.5 (C), 140.3 (CH).
Z
-16: 1H
NMR (200 MHz, CDCl3) δ 2.34 (q, J = 7.0 Hz, 2 H), 3.73 (t, J = 7.0 Hz, 2 H), 6.18 (t, J = 7.0 Hz, 1 H). 13C NMR
(50 MHz, CDCl3) δ 39.2 (CH2), 60.4
(CH2), 75.7 (C), 137.3 (CH).
(Me3Si)2CuCNLi2 was
prepared by reaction of 2 equivalents of MeLi with 2.2 equivalents
of (Me3Si)2 in THF/HMPA (5 mL:1 mL),
and 1 equivalent of CuCN at 0 °C. For preparation of Me3SiLi
see:
<A NAME="RG02803ST-15A">15a</A>
Lipshutz BH.
Sharma S.
Reuter DC.
Tetrahedron Lett.
1990,
31:
7253
<A NAME="RG02803ST-15B">15b</A>
Still WC.
J. Org. Chem.
1976,
41:
3063